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U N S T E A D Y  A E R O D Y N A M I C  C H A R A C T E R I S T I C S  O F  A T H R E E -  

D I M E N S I O N A L  P L A T E  C A S C A D E  IN A S U B S O N I C  GAS F L O W  

V. P. Ryabchenko UDC 532.5:621.22 

The aerodynamic forces on working blades of axial turbomachines in an unsteady subsonic gas flow are often calculated 
under the hypothesis of cylindrical profiles. According to this hypothesis, the gas flow in every cylindrical layer of a row of 

blades is replaced by an approximately plane-parallel flow through a periodic airfoil cascade. The range of the cascade and 

flow parameters for which the hypothesis works is still uncertain. However, the practice of designing high-velocity compressors 

and fans calls for complete comprehension of the character of the gas flow, in particular, its three-dimensional nature. Since 
the nonlinear problem on a viscous gas flow through the blade rows is complicated to solve, a manageable linear model of 
three-dimensional unsteady flow needs to be developed. 

The simplest three-dimensional model of an axial turbine is a plate cascade of finite span. The plates are of rectangular 

planform and are bounded at the ends by parallel planes 1-11 and II  2 (Fig. 1). This model probably matches most precisely an 
axial turbine with a t i p -  root ratio close to unity and a large number of blades. The problem was considered in this statement 

in [I, 2]. In [I] the method of aerodynamic interference and the mathematical apparatus of Mathieu's functions were used, In 
[2] the factorization method was used, and good agreement of the numerical results with results of [1] was shown by several 

examples (for an incompressible liquid). The sophistication of the mathematical model complicates performance of numerical 
experiment and thereby the qualitative analysis of the results. Moreover, for the methods employed in [1, 2] the geometry of 
the gas flow region is essential, so they cannot be used to solve the problem within the framework of other models (for 
example, the model of an annular cascade). 

The method of horseshoe vortices (Il-vortices), which is widely used for calculation of incompressible fluid flows, is 
generalized here for a compressible medium. The method proposed can be used for solving problems of cascade flow in 
turbines of different geometry, as well as the classical problems of the theory of a finite-span wing. 

Statement of the Problem. We shall consider a three-dimensional plate cascade with the stagger ~ (Fig. 1), the plates 

being bounded at the ends by the planes H t and l I  2 (rI 1 is the plane of attachment of blades). The distance between the blades 
h along the span remains constant. 

It is assumed that the cascade blades E n oscillate synchronously according to a certain harmonic law with small 
amplitude, frequency o~, and constant phase shift/z between the oscillations of adjacent blades. The velocity of the freestream 

gas flow at infinity ahead of the cascade is V. The distorted gas flow beyond the blade cascade and vortex wakes shedding from 

each blade owing to the variability of circulation with time and blade height is potential. We shall simulate the vortex wakes 
W n by discontinuity surfaces of tangential velocities, which continue the plates behind the trailing edges to infinity. 

We introduce Cartesian coordinates OXlYlZ 1 attached to one of the blades, which we will call the zero-th blade (n = 

0). We place the origin at the root chord of the blade lying in the plane of attachment II 1. We direct the x t axis along the chord 
parallel to the velocity of the main flow, align the Yl axis with the plate span, and direct the z 1 axis perpendicular to the x 1 

axis in the plane II 1. It is convenient to change to dimensionless coordinates x, y, and ~ connected with x 1, Yl, and z I by the 
relations 

z~ = l~, y~ = l y / 3 ,  zl  = l:~/3, 

where l is the blade height, ~2 = 1 - -  M2; M = V / a  is the Mach number; and a is the velocity of sound in the undisturbed 
flow. 
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Under the above assumptions the following problem arises for the amplitude of the potential ~, of  the perturbed 

velocities 

M s M 2 
A~o -- 2i-~q~o~ + -~q2~o = O, 

~o~ = ~ - l v ( ~ , y ) e x p ( i n # )  (n  = 0 , 4 - 1  . . . .  ) 

[pl = D d  = o fo~ , ,  c w . ,  

~ ,y=O for x E I I 1 u I I 2 ,  

] V ~ a l < o o  for :~=0,5.~ -1, 0_<//_</~. 

for x E ~n, (1) 

Here x = (x, y, z); q = od/V; v(x, y) is the prescribed amplitude function of the oscillation velocity (oscillation mode); square 

brackets denote a sudden increase of  the value enclosed in them; i is imaginary unit y, X = //(2c) is the aspect ratio of the 

blade, and c is its half-chord. 
Equation (1) for ~ is obtained by linearization of the problem for uniform flow along the x axis and a dilatation 

transformation along the y and ~ axes with the parameter 1//3. In addition, the radiation condition is imposed, which implies 

that solution should not contain waves arriving at the cascade from infinity. 

Fundamenta l  Solution. Following [3], to find a fundamental solution we consider the inhomogeneous equation 

A G -  2iM2#-aqGe. + M2~-2q2G = - f ( M o ,  ~), 

where f(M o, x) is the given function (M o = (y, z)) with the boundary conditions 

Gy=O for y = 0 ,  y=/3.  

Let us introduce a new unknown function 

Then Eq. (2) becomes 

= eiM2ql#2eG. 

AG + k.20 = -eiM2q/~L~ f(Mo, ~:), k = Mq/~ 2. 

(2) 

Let us introduce the reference frame (x, y, z) (the z axis is directed along the cascade axis) turned at an angle 8 with respect 
to the initial coordinate system. The coordinates are related by the formulas 

z = ~ , cos / f -  ~,sin~, z = ~,cos6+ r 

In the new variables we obtain the following equation 
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With respect to the variable z the fundamental solution should possess generalized periodicity, and according to the boundary 

condition of nonpenetration it should satisfy the boundary conditions at y = 0 and y = /3. Having represented G as a double 
series, we obtain finally 

E .  oo cr ~m 
G(x,Y) = ~-~.__~_oo,~=_r162 ~ e x p [ - r ~ , , I x _  el+ i ( a .  + ~/f,) ( z -  r c o s Z ~ u c o s Z ~ m  (3) 

2 2 
Here Et, = exp {iM2q/B2[(_x - -  ~) cos dt + (z - -  ~) sin di]}; h = h/l; s = (tXn + /z/h) 2 + /Sm - -  k2; eo = 0.5; e m = 1 with 

m = 1, 2 . . . .  ; tx n = 2~rn/h; Bm = mr~B; y = (~, ~/, D; Fmn is chosen such that the radiation condition holds. 
However, the calculation of the funct.ion G from (3) and its derivatives becomes impossible as ] x -  ~ ] --- 0, because 

when the points coincide, they display singularities, and the series representing them become divergent. Therefore, we should 

derive another expression for the function G, which should distinguish explicitly these singularities and be free of problems 

associated with divergence of the series. For this purpose we use the representation [4] 

o o  

~ ~ m  e _ ~ l x _ , ,  = 2r / cOs ~mtKO(~ ~t2 + Ix - ~l~)dt 
0 

(K o is a modified Bessel function). Substituting it in (3) and taking into account that 

cosmx = - ~  + r ~(z - 2n r ) ,  
m = l  r t= - -oo  

we write 

N - 1  

G = 2rrgh----~ E etV" e 'an(z-(-vh) I(o(anr+(O)) + l(o(anr_(O))+ 
v=O n 

+ ~_. [Ko(a~r+(m))+ Ko(a.r+(-m))+Ko(a,~r_(m))+ Ko(a~r_(-m))] }} 
r n = l  

~ 2  _ k 2 r2(m)  = (y + ~ + 2m13) 2 + (x - -  ~)2, tS(x) is the Dirac delta function, N is the number of blades in the (a n = c~ n 
main cascade period). It was shown in [5] that with I~1 < 27r 

:, 1 
n=x n=-oo ~/z2 + 

Using this result and taking into account that 

{ E eiV . = 0 
v=O N 

and Ko(iz ) = -1/2~riFI~2)(z) with - a ' / 2  < arg z < a', we obtain 

for # # 0 ,  
for p = 0  

E + + x ~=o ,,=-ook R+ R_ ] 

+ ~ cos ,~ , , (z  - r - ~ , ~ ) [ r o ( . , , r + ( m ) ) +  
,,,,.=1 

+ Ko(anr_(m)) + Ko(anr_(-m))]~ + A~,. +Ko(a&+(-m)) 
J 
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Here At, = 0 with/~ # 0; 

A o = - ~  Yo(kr+(O)) + Yo(kr_(O))-i [H(o2)(kr+(m)) + H(o2)(kr-(m))] ; 
g t l ~ - ~ O 0  

YO is a Bessel function of the second kind, H(o 2) is the Hankel function, and R 2 = (x - -  ~)2 + (y + ~7)2 + (Z - -  ~" - -  ~ ' h  - -  

nt~?. 
The series in Hankel functions in A o is analogous to the expression obtained by the reflection method at the strip {0 

<__ y _< /3, - o o  < x < oo } at whose boundaries a zero Neumann condition holds. The function A 0 has a logarithmic 
singularity when the points x and y coincide. Using Poisson's summation formula 

OO 

oo 1 f f(r)e_i~,dr v. :(.--> = 

and the integral representation of the Hankel functions [7], we obtain 

iE u oo 
Co = - E = 

E~, [e-ik__ Iz-r oo e_X/(~,q~)~_k21~_r u r  urr ] 
L ik + 2 Z  y os = ,  -f -f 

Since there is a term tending to infinity as k --, 0 in this formula, there is no limiting process in the solution of the 

Laplace equation. Inasmuch as the fundamental solution is determined to within the solution of the homogeneous equation, one 
can subtract (1/ik)exp ik(x - -  ~) in the square brackets, thus providing the passage to limit [6]. The convergence of the series 

with respect to v can be significantly improved by subtracting and adding the series with k = 0, which equals 

~lz-r 4 ch ~ ( z - s t ) - c o s ~ ( r / - y )  ch ~ ( x - ~ ) - c o s ~ ( r / + y )  . 

In addition, the singularity of  the series for G O as Ix - -  ~ I --" 0 is removed. 
Integral  Representat ion for  the Velocity of  a Gas Flow. Applying the technique reported in [8], one can obtain a 

representation for the velocity of  a gas flow in terms of the values of the surface curl 7 = n • [v] (the vortex layer intensity) 

at the blade surfaces ~n and the vortex wakes behind them W n. Equation (1) can be written as 

div U +/~k2~o = O, 

if we introduce the vector U with components 

0~o M 2 Oq O~ 
U::= ~ - 2 i - ~  q% Uy=-~y, Uz= ~z. 

We introduce the function ~b with continuous second derivatives, which satisfies the equation conjugate to (1). We construct 
the vector V using the formulas 

O~b M 2 O~b O~b 
V::= -~z + 2i-~q~b' Vy= -~y, V, = ~z" 
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Then the function ~b satisfies the equation 

div V + j32k2~h = 0. 

We integrate the difference 

~b(div U+fl2k2qa)-~p(div V+~2k2~b) = div ( g , V ) - d i v  ( ~ U ) + V ~ - V - V ~ b . U  

over a certain volume 9 wherein the above equations hold. Using the Gauss-Ostrogradskii  formula, we obtain 

M 2 

f~ 8 S 

where S is the surface bounding the volume f]; n is the outward (with respect to ~) normal to this surface. 

Now let ~ = G(x, y) be the fundamental solution to Eq. (1). Then for the points x E 9 we obtain the representation 
of the velocity potential in terms of its value at the boundary S: 

2iM2q~l (4) 
= ~o ~32 

Here 

s s 
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We calculate the velocity vector v = V,p using Green's formula (4). Applying the transformations carried out in [8] and the 

equality 

V=G = - V G  v + g, 

we have 

= - V,G+(n. )V,G- nZX,G1 a s ,  
$ $ 

V~l = - f ~v,Gnc dS + f ~gn, dS = 
s $ 

s 1~ s 

s 

Substituting the resulting expressions in formula (4), we find f'mally 

V~o= - f [ ( n  x v)  x VvG + V u G ( n - v ) ] d S + f t g ( n .  v)  - cp(n. Vu)g]dS+ 
$ s 

+2iM2q/,' / [ ( n ~ -  Vgn,) G-  gn,9] dS- k2132 / n~ oGdS. 
s s 

(5) 

The integral representation (5) has been obtained for an arbitrary point x lying inside the region t2 with a sufficiently smooth 

boundary S. For the problem of flow past a thin body it retains the same form if the integration is carried out over one side 

of the surface of the body, the vector v is replaced by its jump Iv] when passing through this surface, and allowance is made 

for [v-n] = 0. Here it is convenient to introduce the vector intensity of the vortex layer 3" = n • [v] (the surface curl). Then 

Iv] = 3' x n, [~] = ~ L(M0)(3" • n)-dx. The line L(M0) is drawn at the vortex surface E from the leading edge of the blade 

to the point M 0 where the value of the potential is determined. 

For the problem under consideration n = (0, 0, 1), (n.Vy)g = ag/Oz, gx = gz = 0, 3' = (3"x, 3"y, 0), and then 

(6) 

With M = 0 and G = 1/(47r Ix - -  Y I) we obtain from (6) the Biot-Savart  formula widely used in the theory of wings and 

cascades. 
Projecting the expression for the velocity (6) onto the plane normal to S at the point x and demanding the fulfillment 

of  the blade nonpenetration condition, we obtain a functional equation for the vector 3"(y) at points of  the surface S. The vector 

3' involves the following two components at the blade and vortex sheet: 3'y = 3"y+ + 3'y_ and 3'x- Here 3"y+ is the intensity 

of  the bound vortex whose axis is parallel to the y axis; 3"x and 3'y_ are the intensities of free vortices with the axes along the 

axes x and y. 
The intensities of  free vortices can be expressed in terms of the intensity of  bound vortices: 

for free vortices at the blade 

_io,] 
%-(=,v) = --9- r~+(~'v)~Fcr 

~ C  

(7) 

for free vortices with the axis along the y axis the coordinate of the trailing edge of the blade at the points of the vortex 

sheet x = c should be the upper limit of the integral in (7); 
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for free vortices with the axis along the x axis 

7=(z, y) = - ] ~-(~, y)ei~(~-~)d~. 
p C  

At the blade the potential jump is determined from the formula 

[qo](z, y) = - ] 7~+(~, Y)ei~'({-=)d{ 
- - C  

while at the wake the upper limit must be substituted for c. 

Method of  Horseshoe Vortices. The integral presentation (6) admits the construction of a numerical algorithm 

analogous to that obtained with the method of  H-vortices in the theory of  a finite-span wing in an incompressible fluid. To this 

end, we assume that in the region occupied by the gas there is one vortex filament L lying in the plane z = 0. We consider 

its intensity F to be constant along L. In this case 

7(x)  = r ~ 
Os 

(s is the arc coordinate of  the line L). In our case s is either y or x. 

We substitute the cascade blades and vortex wakes behind them for the vortex surfaces and turn from the continuous 

distribution of vortices to the discrete one. For this purpose we separate the surface of  the blade into N 1 strips along y, then 

each strip into N 2 parts along x. We simulate each resulting tetragon by a H-vortex composed of a part of the bound vortex, 

which is directed along the y axis and is of size 26y and intensity F+i = /VF i, and the system of free vortices defined in the 

preceding section. 
Using the integral representation (6), we obtain the velocity component normal to the blade, induced by the i-th bound 

vortex: 

ui + 6 v  
i -Fi / (OG~., OG M 2 q r 2 ,  - '"  v. = - ~  cos * + ~ sin di + 2i ~ -/32k2A(G) d(, 

yi -6y 

where A~ is the length of the side of the element along the x axis. 
Since the integrands contain singularities, if the points x and y coincide, then in calculating the integrals they should 

be separated so that the integrals of the separated parts can be found analytically. Then 

fOG OG z-~i'~drl+(z_(i)ii, -y( d, = f ( -y( 4 r R 3 /  

f Gdo = f @ -  4-~'-K) do + I2. 

Here R 2 = (x - -  ~i) 2 + (y - -  7) 2 + (Z - -  ~'i)2; 

r / - y  
11 = 4rr[ (z  - ~i)2 + ( z  - ( i ) 2 ] R ;  

/z = l l n  [ r t - u +  RI; 
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~i and ~'i are the coordinates of the i-th bound vortex. The integrals of the functions without singularities are calculated 
approximately from the formula 

yi +61t 

f Gldrl~ 2~yGl(yl). 
Yi -- 5y 

The formulas for determining the normal component of velocity induced by free vortices shedding from the i-th bound 
vortex and vortex layers shedding from the ends of the vortex are derived in the same way. For brevity we write these formulas 

for the case 6 = 0: 
for the free vortices 

xoij 

vinl(Xj'Xi'rl)=iqFie-lqx~ 2~y f eiq~[O~ 4 r R ~ ( Y )  
--00 

1 1 xoq " ' - 1  [ Y+ ]'~7 
+2i 

-oo 
zoij 

M2q / eiq~ln[Y+ + R,(Y+)l d~ + 1 
+i 2 - -~  Y_ + R,(Y_) ~ [Y+ I3(Y+) - Y- I3(Y- )]}, 

for the free vortex layer 

�9 r 

for the potential jump 

f XOij 
~ n 2 ( x J * x l ' ~ ) - ~ F i e - i q z ~  _ e i q ' (  G 471. i~1 ( ~ )  d% r 

r~ ) 
i / eiq, ln]Y++Rl(Y+)[d, . 

+'~r Y- + RI(Y-) 
--00 

Here Y+ = Y + t3y; Y = 71 --  yj; Xoi j = xj - -  xi; R2(y) = ~2 + y2; 

f d~ 1 lnt lY[+ff~(Y)[  
/3(V) = ~RI(Y) = -IY--I] 

1 
A~ = AN2; 

Y2RI(Y )" 

The coordinates of the vortices and control points at the plate are found in a standard way through the method of 

discrete vortices. 
From the fulfillment of the boundary condition of nonpenetration of the cascade plates we obtain the system of algebraic 

equations for the intensities of bound vortices I" i (i = 1 . . . . .  M 1, M 1 = N 1 • N2). The right-hand side of the system is 
governed by the law of oscillations of the cascade blades. 

Aerodynamic Characteristics. Having found Fi, we determine the pressure differential at the blade with the help of 

Zhukovskii's theorem "in the small" 
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P-I- - P-  = Poo VT~+, 

where p+ and p_  are the limiting values of p when approaching the blade surface from the left and from the right, and p~. 

is the freestream gas density. 

The coefficients of  aerodynamic force C z and moment C m with respect to the coordinate origin are determined from 

the formulas 

2z 2 f C, = pooV~----- ~ - -ff 79+ dz dy, 
S 

C m = ~  
M 1 /  

pooV2c S = - ~  (x x iz)7u+ dx dy 
S 

(S is the blade surface area, i z is the unit vector along the z axis, and M is the moment). 

In discrete form with using the previously determined U i these formulas are as follows: 

4~yA 
= - 0 - -  r, ,  

4~5yA2 M1 
= - - 7 -  E ( x  • i.)r,. 

i=1  

The force and moment acting on any profile along the blade height are found from analogous formulas, but summation 

is performed within one strip along y. 

Discussion of  Calculation Results. This algorithm has been used for computer calculations of  the unsteady 

aerodynamic characteristics of  the cascades for different values of the governing parameters. 

Figures 2 and 3 show the dependence of the coefficients of force Czc , and moment Cm~ relative to the y axis drawn 

along the leading edge of the blade under torsional oscillations with respect to the leading edges of the blades on the Strouhal 

number k = 2o~c/a for a cascade density z = 2c/h equal to 1 and 2. In this case the stagger angle di = 0, the phase shift 

between the oscillations of  the adjacent blades/x = 7r, and the oscillation mode remained invariant with the blade height. The 

dashed lines present the calculation results obtained in [9] through the two-dimensional theory of subsonic flow past cascade 

plates. As is seen from the calculations presented, the discrepancy of the results is slight, except for the high densities (r = 

2) and the Strouhal numbers (k - 1). The comparison shows satisfactory agreement of the calculation results obtained through 

the method proposed and on the basis of  the simpler two-dimensional theory. 

Figures 4 and 5 demonstrate the change of the modulus of the coefficient of aerodynamic force per unit span ] Cza I 

along the blade span (y --, y//) with aspect ratios k = 1, 3, 5 and oo for compressible and incompressible liquids with the phase 

shift Ix = 7r. The calculations were carried out for the cascade with r = 1, ~ = 60 ~ In this case the Strouhal number k 1 = 

oJc/V was assumed equal to 0.5, and the Mach number M = 0 and 0.7. The mode of the blade oscillations in the direction of 

the z axis v(x, y) = (1 + iklX)[1 - -  cos(Try//)] corresponds to torsional oscillations of the plates relative to their middle with 
variable torsion amplitude along the y axis. 

The case k = oo corresponds to calculations under the hypothesis of plane transverse profiles, when aerodynamic 

characteristics for each value of  y depend on the law of plate oscillations only in the given profile. The dashed curves in Fig. 

4 are plotted on the basis of the results of [1]. The agreement of the results is good. This justifies the conclusion drawn in [1] 

that the aerodynamic load distribution along the plate span levels off as the plate aspect ratio decreases. According to the data 

presented, this effect is manifested almost identically for compressible and incompressible liquids, although it was stated in [I] 

that with M = 0.7 the leveling out is more abrupt. In the middle section, curves with different k intersect at one point both 

with M = 0 and M = 0.7, i.e., the calculation results coincide with the data obtained from the two-dimensional theory. 

The work is accomplished under the support of the Russian Foundation for Fundamental Research 93-013-16653. 
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